STUDY OF NETWORK TRAFFIC BEHAVIOR AND DETECTION OF ATTACKS IN WIRESHARK

AMANPREET KAUR Student Of M.Tech, SBSSTC/ Computer Engg., Ferozepur, India e-mail - aman2s2@yahoo.co.in

MONIKA SACHDEVA

A.P, SBSSTC/Computer Engg., Ferozepur, India e-mail - monika.sal@rediffmail.com

ABSTRACT: Security has become an important requisite due to the prevalent attacks and various other security issues that have made networks vulnerable to a great extent. There is a requirement to analyze the networks and diagnose the malicious packets travelling through it. This lead to the development of a number of packet analyzers that will monitor the network assets to detect their anomalous behavior and misuse . In this paper we use wireshark as a packet analyzer which observed the communicating nodes and gathered data from them on an institute network . Wireshark is an open source packet analyzer , which was formerly known as Ethereal. Protocol usage distribution is built which shows low , medium and peak loads of traffic . HTTP Statistics are built for request and response analysis and Expert analysis is done to detect warnings and malformed packets . The outputs are shown in graphs namely time Sequence graph, round trip time graph , throughput graph and flow graph . Certain attacks are observed namely DHCP Spoofing , DDOS attack, ARP Spoofing , HTTP Spidering and they are shown through graphs as well. The graphs obtained here using wireshark help to interpret the efficiency and performance of the network of an institute taken.

KEYWORDS: Intrusion Detection System, Network Security, Wireshark.

INTRODUCTION TO NETWORK SECURITY AND INTRUSION DETECTION SYSTEM

Network security means to secure the electronic data while stored in networked systems or transmitted through networks from various vulnerabilities, attacks and threats [1]. The main goal of network security is to give people the freedom of using computer networks without fear of compromising their rights and interests. Network security involves a number of activities that protect the network and the network accessible resources from unauthorized access usually by the outsiders. Another feature is Intrusion Detection System (IDS) ,it is a process of detecting intrusion in database, network or any other device for providing secure data transmission. Intrusion detection system (IDS) is a device or software application that monitors network and system activities for malicious activities or policy violations and produces report to a management station [2]. When you run the Wireshark program, the wireshark graphical user interface shown in Figure 1. will be displayed.

Figure1. Wireshark window

In our work, we have analyzed the network traffic of an institute from 30/01/2014 to 06/02/2014 for around 8 days for different durations and captured traffic using Wireshark, which is an open source packet analyzer. It provides facility named TCP Stream for reading data from source to destination. The results are obtained for six Traces by using the Wireshark tool, results are visualized with protocol usage at Low ,Medium and Peak loads, Request and Response analysis is done, Errors, Warnings are detected through Expert Info analysis, Time Sequence graphs, Round Trip Time (RTT) graphs and Throughput Graph are also analysed. While using wireshark some captured traces are too large, so graphs are drawn packet by packet. So that's why some of the graphs have been reduced to capture only the important details. As we analyzed the traffic ,Table I shows the values of various parameters that we observed.

	Captur	Duratio	Capture	Avg.	Avg.	Bytes	Avg.	Avg.
	e Time	n	d Pkts.	Pkt /sec	Pkt	-	Bytes/sec	Mbits/se
					Size			с
Trac	12:21 -	7 min	14039	423.31	104.82	1471621	3476.385	0.028
e 1	12:28			9	4			
Trac	12:43 -	7 min	1101	2.531	533.48	587362	1350.193	0.011
e 2	12:50				0			
Trac	10:34 -	21 min	68016	53.973	191.97	1305736	10361.47	0.0831
e 3	10:55				5	9	4	
Trac	12:01 -	21 min	87524	68.133	445.80	3901888	30374.23	0.243
e 4	12:22				8	0	0	
Trac	09:01 -	53 min	120091	37.203	131.72	1581837	4900.425	0.039
e 5	09:54				0	8		
Trac	09:32 -	53 min	104274	32.590	143.92	1500707	4690.401	0.038
e 6	10:25				0	0		

Table 1. Summary Of Traces Captured

LITERATURE SURVEY

The proposals common goal is to study the network traffic and analyze it by using some network security tool in order to have better understanding about the various threats and attacks that can affect the network. For this it is very important to go through certain research papers that deeply discuss the network tools and their results. A few papers enumerated are Shilpi Gupta, et.al, 2012 explained about Intrusion Detection System which is a process of detecting intrusion in database, network or any other device for providing secure data transmission. The author purposed an IDS which detects intrusion in network to provide safe and intrusion free network by using Wireshark. Aamir Hassan in 2010 discussed about all the possible tools and techniques that attackers use to compromise the network. The purpose for exploring these tools will help an administrator to find the security holes before an attacker can. It is important to note that most of the attention in network security is given to the router, but far less attention is given to securing a switch. Usha Banerjeein, et.al, 2010 illustrated the functionality of Wireshark as a sniffing tool in networks. Testing has been achieved through experimentation on a real time network analyzed by Wireshark. This paper highlights the working of Wireshark as a network protocol analyzer and also accentuates its flexibility as an open source utility to allow developers to add possible functionalities of intrusion detection devices in it. Inferences have been made which clearly depict Wireshark's capabilities highlighting it as a strong candidate for future development into a robust intrusion detection system. Joshua L. Davis, 2007 has discussed about capturing the traffic using wireshark and producing network usage baselines. The paper has proved that despite limitations in Wireshark for handling large capture files, there is a way to manipulate data to create comprehensive network-usage baselines. Through the development of this methodology, the author hopes to begin some open source projects to help fill this void while also intending on improving Wireshark's capabilities. Mohsin Khan, et.al, 2013 investigated how DHCP Client/Server request and reply messages work and what values and parameters are considered during this whole process. In this research we capture DHCP packets by using wireshark to deeply investigate and analyze them. On a network, when data is transferred between the hosts, it is passed through several stages. Data is actually passed through a very complex process at the sender and receiver than it apparently looks to be. During transmission data is broken down into smaller chunks of data so that they can be carried on the wire. These chunks are given appropriate headers, encapsulated and then passed through several layers to reach the destination. Justin Jay Lister, 1995 gave an introduction to computer security by identifying the confidentiality, integrity and availability issues of information security. He also examined many of problems and vulnerabilities. Some statistics of intrusions is presented to show that there is still need for more effective security mechanisms. Lundin, E. ; Jonsson, E. ,2002 done research in the intrusion detection area. He described the design and implementation of specific intrusion detection systems. His survey focused on presenting the different issues that must be addressed to build fully functional and practically usable intrusion detection systems (IDSs). He stressed on more work in field of privacy enhancing techniques such as third party analysis of log files and detection output.

METHODOLOGY AND EXPERIMENTAL SETUP

For real-time packet capturing, we use following methodology for packet capturing as shown in Figure 2.

Figure 2. Methodology For Using Wireshark

- a) Various cable taps, hubs , switches, etc. can be used to attach a sniffer to a network
- b) Use laptop to run wireshark and a small hub attached to it and some network cables for troubleshooting.
- c) Install a small hub between server and the switch and connect the wireshark laptop to it. Wireshark will then see all the traffic going to and coming from the server as shown in Figure 3.

TRAFFIC PER PROTOCOL

By identifying the protocol distribution of captured traces, the following results are obtained shown in the table below. These tables depicts the values of various parameters namely percentage of packets, number of packets, percentage of bytes, bytes and Mbit/s in TCP Protocol which are observed in different traces as Low, Medium and Peak Load. Each row contains the statistical values of one protocol.[8] Table II. shown below displays the statistics for different traces that we obtained with respect to the protocols used.

Figure 3. Wireshark placements using a Hub in an Institute

	Trace	Trace	Trace	Trace	Trace	Trace	
	1	2	3	4	5	6	
	Dura	tion 7	Duration	n 21 min	Duration	n 53 min	
	m	in	(Peak	(Peak Load)		(Med. Load)	
	(Low	Load)					
IPv4	0.007	0.011	0.054	0.000	0.020	-	
UDP	0.011	0.000	0.029	0.014	0.008	0.007	
NetBIOS	0.003	-	0.008	0.003	0.003	0.004	
Name Service							
Domain	0.001	-	-	0.003	0.002	0.001	
Name Service							
Data	0.001	-	-	-	0.001	0.005	
HTTP	0.000	-	0.006	0.056	0.000	0.004	
Dropbox	0.000	-	0.000	0.001	0.001	-	
LAN							
Discovery							
Protocol							
NetBIOS	0.000	-	0.000	0.001	0.000	-	
Datagram							
Service							
SMB	0.000	0.000	0.000	0.001	0.000	-	
SMB Mail	0.000	0.000	0.000	0.001	0.000	-	
Slot Protocoln							
Microsoft	0.000	0.000	0.000	0.001	0.000	-	
Window							
Browser							
Protocol							

Table 2 . Summary Of Protocol Distribution On The Basis Of Mbits/s

Data					0.000	
BOOTP	0.001	-	0.001	0.001	0.001	0.001
Teredo IPv6	-	-	-	-	0.000	-
over UDP						
Tunneling						
IPv6	0.011	-	0.023	-	0.000	0.015
Open VPN	-	-	-	-	0.000	-
Protocol						
Malformed	0.000	0.000	0.000	0.000	0.000	0.000
Packet						
Network	0.000	0.000	0.000	0.000	0.000	0.000
Time Protocol						
Packet Cable	0.000	0.000	0.000	0.000	0.000	0.000
SEBEK-	-	-	-	-	0.000	-
Kernel Data						
Capture						
Data	-	-	-	-	0.000	-
Licklider	-	-	-	-	0.000	-
Transmission						
Protocol						
Data	-	-	-	-	0.000	-
Canon BJNP	-	-	-	-	0.000	-
IGMP	0.000	0.000	0.007	0.008	0.000	-
ТСР	0.001	-	-	0.211	0.011	-
SSL	0.000	0.002	0.000	0.008	0.003	0.000
HTTP	0.000	-	0.006	0.056	0.000	0.004
Online	-	-	-	-	0.000	-
Certificate						
Status						
Protocol						
Media Type	-	-	-	-	0.000	-
Line Based	0.000	0.000	0.000	0.000	0.000	0.000
Text Data				-	0.000	
Data	-	-	-	-	0.000	-
NetBIOS	-	-	-	-	0.000	-
Session						
Service					0.000	
SMB SMD Dires	-	-	-	-	0.000	-
SMB Pipe	-	-	-	-	0.000	-
Microsoft					0.000	
Win Lonmon	-	-	-	-	0.000	-
Permoto						
A PIProtocol						
SMR2					0.000	
ICMD	-	-	-	- 0.000	0.000	-
	0.000	-	0.004	0.000	0.000	- 0.005
	0.009	0.000	0.000	0.000	0.007	0.005

IPv6	0.011	-	0.023	-	0.002	0.015
TCP					0.000	
HTTP	0.004	-	0.003	-	0.000	0.003
Logical Link	0.000	-	0.001	0.000	0.000	0.001
Control						
Spanning	-	-	-	-	0.000	-
Tree Protocol						
Data	-	-	-	-	0.000	-
Data Nortel	-	-	-	-	0.000 0.000	-
Data Nortel Discovery	-	-	-	-	0.000	-
Data Nortel Discovery Protocol	-	-	-	-	0.000	-
Data Nortel Discovery Protocol IPv4	0.03	0.025	0.063	0.517	0.000 0.000 0.000	0.105
Data Nortel Discovery Protocol IPv4 Data	0.03	- 0.025	0.063	0.517	0.000 0.000 0.000 0.000	0.105

From this summary we conclude that for traces of 21 mins (Trace 3 and 4) we have more values of Mbits/s than Traces for 7mins and 53 mins i.e Trace 1,2,5,6 resp.This means we have more number of conversation between sender and receiver.

Request And Response Analysis of HTTP Traffic

HTTP Packet Counter with Filter TCP

Wireshark can also present a tree-like view of HTTP activity .It identifies the types of request and response packets. Also the quantities of each type, data rates, and overall percentages of all request and response types .This feature is also helpful at identifying how a Web server is being used, and can even identify potentially malicious activity with unsupported or broken HTTP requests or responses. HTTP Request statistics identify all the HTTP request URLs for each HTTP server in the packet capture, including the number of frames, data rate, and request percentage. This is useful to identify popular requests for a specific server. [9] HTTP Statisticts for all the six traces captured are shown in Tables III,IV,V,VI,VII,VIII.

Wireshark can also present a tree-like view of HTTP activity .It identifies the types of request and response packets. Also the quantities of each type, data rates, and overall percentages of all request and response types .This feature is also helpful at identifying how a Web server is being used, and can even identify potentially malicious activity with unsupported or broken HTTP requests or responses. HTTP Request statistics identify all the HTTP request URLs for each HTTP server in the packet capture, including the number of frames, data rate, and request percentage. This is useful to identify popular requests for a specific server. [9] HTTP Statisticts for all the six traces captured are shown in Tables III,IV,V,VI,VII,VIII.

Tuble 5. The Statistics For Thee T										
Topic/Item	Count	Rate	%	Topic/Item	Count	Rate	%			
		(ms)				(ms)				
HTTP	5	0.005630								
Request By										
Server										
a)HTTP	5	0.005630	100%	b)HTTP	5	0.005630				
Requests by				Responses by						

Table 3.	Http	Statistics	For	Trace	1

server address				server address			
74.125.236.33	1	0.001126	20.00%	74.125.236.33	1	0.001126	20.00%
173.194.36.64	1	0.001126	20.00%	173.194.36.64	1	0.001126	20.00%
173.194.36.78	3	0.003378	60.00%	173.194.36.78	3	0.003378	60.00%
HTTP	5	0.005630	100%				
Requests by							
HTTP Host							

Table 4. Http Statistics For Trace 2

Topic/Item	Co	Rate	%	Topic/Item	Count	Rate (ms)	%
	unt	(ms)					
HTTP	33	0.000					
Request By		082					
Server							
a)HTTP	33	0.000	100%	b)HTTP Responses	30	0.000075	
Requests		082		by server address			
by server							
address							
49.200.255.	3	0.000	9.09	49.200.255.209	3	0.000007	10.00
209		007	%				%
64.4.11.42	2	0.000	6.06	64.4.11.42	2	0.000005	6.67
		005	%				%
65.55206.2	2	0.000	6.06	65.55.206.229	2	0.000005	6.67
29		005	%				%
131.253.13.	2	0.000	6.06	131.253.13.140	2	0.000005	6.67
140		005	%				%
207.46.61.2	2	0.000	6.06	74.125.200.94	1	0.000002	3.33
9		005	%				%
74.125.200.	1	0.000	3.03	173.194.117.9	3	0.000007	9.09
94		002	%				%
173.194.11	3	0.000	9.09	173.194.117.6	12	0.000030	40.00
7.9		007	%				%
173.194.11	13	0.000	39.39	65.55.11.179	5	0.000012	16.67
7.6		032	%				%
65.55.11.17	5	0.000	15.15				
93		012	%				
HTTP	33	0.000	100%				
Requests		082					
by HTTP							
Host							

	TABLE 5.	. HTTP	STATISTICS	FOR TRACE 3
--	----------	--------	------------	-------------

Topic/Item	Co	Rate	%	Topic/Item	Count	Rate (ms)	%
	unt	(ms)					
HTTP	25	0.000					
Request By	9	450					
Server							

HTTP	25	0.000	100%	b) HTTP	236	0.000410	100%
Requests	9	450		Responses by			
by server				server address			
address							
124.124.20	4	0.000	1.54	124.124.201.200	4	0.000007	1.69
1.200		007	%				%
65.54.82.14	1	0.000	0.39	65.54.82.145	1	0.000002	0.42
5		002	%				%
58.26.185.4	1	0.000	0.39	58.26.185.42	1	0.000002	0.42
2		002	%				%
23.47.235.2	2	0.000	0.77	23.47.235.27	2	0.000003	0.85
7		003	%				%
23.41.75.27	2	0.000	0.77	23.41.75.27	2	0.000003	0.85
		003	%				%
58.26.185.5	10	0.000	3.86	58.26.185.57	7	0.000012	2.97
7		017	%				%
58.26.185.6	3	0.000	1.16	58.26.185.65	1	0.000002	0.42
5		005	%				%
65.54.51.25	1	0.000	0.39	65.54.51.252	-	-	
2		002	%				
58.26.185.3	1	0.000	0.39	58.26.185.35	1	0.000002	0.42
5		002	%				%
58.26.185.6	1	0.000	0.39	58.26.185.66	-	-	
6		002	%				
74.125.236.		0.000	1.54	74.125.236.198	4	0.000007	1.69
198		007	%				%
74.125.200.	2	0.000	0.77	74.125.200.94	2	0.000003	0.85
94		003	%				%
76.74.254.1	1	0.000	0.39	76.74.254.120	1	0.000002	0.42
20		002	%				%
68.232.44.1		0.000	10.42	68.232.44.111	24	0.000042	10.17
11		047	%				%
68.232.44.1	53	0.000	59.07	68.232.44.121	46	0.000254	61.86
21		266	%				%
68.232.44.2	1	0.000	0.39	68.232.44.251	1	0.000002	0.42
51		002	%				%
199.22.77.1	1	0.000	0.39	199.22.77.192	1	0.000002	0.42
92		002	%				%
192.0.80.24	2	0.000	0.77	192.0.80.247	2	0.000003	0.85
7		003	%				%
54.246.174.	2	0.000	0.77	54.246.174.85	2	0.000003	0.85
85		003	%				%
182.50.136.	3	0.000	1.93	182.50.136.239	3	0.000005	1.27
239		005	%				%
50.18.52.22	2	0.000	0.77	50.18.52.222	2	0.000003	0.85
2		003	%				%
184.72.54.6	1	0.000	0.39	184.72.54.69	1	0.000002	0.42

9		002	%				%
74.125.236.	1	0.000	0.39	74.125.236.199	1	0.000002	0.42
199		002	%				%
173.194.36.	6	0.000	2.32	173.194.36.69	6	0.000010	2.54
69		010	%				%
23.58.43.27	1	0.000	0.39	23.58.43.27	1	0.000002	0.42
		002	%				%
58.27.124.1	2	0.000	0.77	58.27.124.163	1	0.000002	0.42
63		003	%				%
58.27.124.1	5	0.000	1.93	58.27.124.154	1	0.000002	0.42
54		009	%				%
58.27.124.2	19	0.000	7.34	58.27.124.202	18	0.000031	7.63
02		033	%				%
HTTP	25	0.000	100%				
Request By	9	450					
Host							

Table 6.	Http Statisticsvfor Tra	ice 4
0.4		a

Topic/Item	Co	Rate	%	Topic/Item	Count	Rate (ms)	%
	unt	(ms)					
HTTP	22	0.000					
Request By	2	199					
Server							
a)HTTP	2	0.000	100%	b)HTTP Responses	99	0.000410	100%
Requests		199		by server address			
by server							
address							
173.194.36.	9	0.000	4.05	173.194.36.95	8	0.000007	4.02
95		008					
162.159.24	7	0.000	12.16	162.159.242.165	7	0.000024	13.57
2.165		024					
74.125.200.	10	0.000	4.50	74.125.200.95	0	0.000009	5.03
95		009					
173.194.36.	8	0.000	3.60	173.194.36.80	8	0.000007	4.02
80		009					
149.101.11	1	0.000	0.45	149.101.116.148	1	0.000001	0.50
6.148		001					
173.194.36.	3	0.000	1.35	173.194.36.66	2	0.000002	1.01
66		003					
173.194.36.	2	0.000	0.90	173.194.36.81	2	0.000002	1.01
81		002					
173.194.36.	2	0.000	0.90	173.194.36.78	2	0.000002	1.01
78		002					
173.194.36.	6	0.000	2.70	173.194.36.84	6	0.000005	3.02
84		005					
173.194.36.	1	0.000	0.45	173.194.36.64	1	0.000001	0.50
64		001					

23.57.235.2	2	0.000	0.90	23.57.235.27	2	0.000002	1.01
7	_	002			-		
173.194.36.	5	0.000	2.25	173.194.36.68	5	0.000004	2.51
68		004					
123.30.6.20	1	0.000	0.45	123.30.6.20	1	0.000001	0.50
		001					
203.162.23	1	0.000	0.45	203.162.234.46	1	0.000001	0.50
4.46		001					
50.17.200.1	12	0.000	5.41	50.17.200.145	12	0.000011	6.03
45		011					
173.194.36.	5	0.000	2.25	173.194.36.89	4	0.000004	2.01
89		004					
173.194.36.	3	0.000	1.35	173.194.36.77	3	0.000003	1.51
77		003					
54.230.172.	5	0.000	2.25	54.230.172.173	5	0.000004	2.51
173	-	004			-		
54 230 172	2	0.000	0.90	54 230 172 70	2	0.000002	1.01
70	-	002	0.20	51.250.172.70	_	0.000002	1.01
173 194 36	8	0.000	3.60	173 194 36 67	8	0.000007	4 02
67	0	0.000	5.00	175.174.50.07	0	0.000007	4.02
173 104 36	3	0.000	1 35	173 104 36 00	3	0.000003	1.51
173.194.30.	5	0.000	1.55	1/5.194.50.90	5	0.000003	1.51
90 54 220 106	5	003	2.25	54 220 106 122			
34.230.190.	3	0.000	2.23	54.250.190.155	-	-	-
155	6	004	2.70	172 104 126 05	5	0.000004	2.01
1/3.194.12	0	0.000	2.70	1/3.194.126.95	5	0.000004	2.01
6.95	15	005		1 (2 1 50 2 11 1 (5	15	0.00001.5	0.54
162.159.24	17	0.000	7.66	162.159.241.165	17	0.000015	8.54
1.165		015					
173.194.36.	4	0.000	1.80	173.194.36.82	4	0.000004	2.01
82		004					
46.28.209.3	5	0.000	2.25	46.28.209.33	-	-	-
3		004					
198.255.20	3	0.000	1.35	198.255.206.16	3	0.000003	1.51
6.16		003					
141.101.11	2	0.000	0.90	141.101.114.59	2	0.000002	1.01
4.59		002					
103.31.6.36	2	0.000	0.90	103.31.6.36	2	0.000002	1.01
		002					
173.255.24	4	0.000	1.80	173.255.243.189	3	0.000004	1.51
3.189		004					
58.26.185.5	1	0.000	0.45	58.26.185.51	2	0.000002	1.01
1		001					
190.93.247.	4	0.000	1.80	190.93.247.58	4	0.000004	2.01
58		004		· · · · · · · · · · · · · · · · · · ·			
96.44.147.1	3	0.000	1.35	96.44.147.186	2	0.000002	1.01
86		003			_		
203,190,12	1	0.000	0.45	203,190,124,12	1	0.000001	0.50
200.170.12	-	0.000	0.10		-	0.000001	0.00

4.12		001					
184.26.197.	2	0.000	0.90	184.26.197.54	1	0.000001	0.50
54		002					
117.18.237.	2	0.000	0.90	117.18.237.29	2	0.000002	1.01
29		002					
173.194.36.	1	0.000	0.45	173.194.36.70	1	0.000001	0.50
70		001					
74.125.200.	2	0.000	0.90	74.125.200.99	2	0.000002	1.01
99		002					
8.27.248.25	2	0.000	0.90	8.27.248.254	-	-	-
4		002					
74.125.200.	1	0.000	0.45	74.125.200.147	1	0.000001	0.50
147		001					
74.125.236.	1	0.000	0.45	74.125.236.218	1	0.000001	0.50
218		001					
131.229.72.	19	0.000	8.56	131.229.72.11	17	0.000015	8.54
11		017					
184.26.23.1	2	0.000	0.90	184.26.23.165	2	0.000002	1.01
65		002					
173.194.36.	1	0.000	0.45	173.194.36.88	1	0.000001	0.50
88		001					
176.101.52.	14	0.000	6.31	176.101.52.178	12	0.000011	6.03
178		013					
184.169.17	2	0.000	0.90	184.169.176.213	2	0.000002	1.01
6.213		002					
HTTP	2	0.000	100%				
Request By		199					
Host							

Table 7. Http Statistics For Trace 5

Topic/Item	Co	Rate	%	Topic/Item	Count	Rate (ms)	%
	unt	(ms)					
HTTP	2	0.000					
Request By		004					
Server							
a)HTTP	2	0.000	100%	b)HTTP Responses	1	0.000002	
Requests		004		by server address			
by server							
address							
23.198.100.	1	0.000	50	23.198.100.239		-	-
239		002					
124.124.25		0.000	50	124.124.252.8	1	0.000002	100
2.8		002					
HTTP	2	0.000	100%				
Request By		004					
Host							

Topic/Item	Co	Rate	%	Topic/Item	Count	Rate (ms)	%
•	unt	(ms)		•			
HTTP	90	0.000					
Request By		082					
Server							
HTTP	90	0.000	100%	b)HTTP Responses	77	0.000075	
Requests		082		by server address			
by server				-			
address							
23.41.75.21	1	0.000	1.11	23.41.75.21	1	0.000000	1.30
		000					
199.7.51.72	1	0.000	1.11	199.7.51.72	1	0.000000	1.30
		000					
58.27.124.2	1	0.000	1.11	58.27.124.202	-	-	-
02		000					
58.27.124.2	3	0.000	3.33	58.27.124.219	-	-	-
19		001					
124.124.25	14	0.000	15.56	124.124.252.9	2	0.000004	15.58
2.9		004					
65.55.192.9	1	0.000	1.11	65.55.192.94		-	-
4		000					
65.55.58.19	1	0.000	1.11	65.55.58.195	1	0.000000	1.30
5		000					
65.52.33.27	1	0.000	1.11	65.52.33.27	1	0.000000	1.30
		000					
65.54.82.15	1	0.000	1.11	65.54.82.158	1	0.000000	1.30
8		000					
124.124.25	32	0.000	35.56	124.124.255.25		0.000010	38.96
5.25		010					
124.124.25	4	0.000	4.44	124.124.252.99	-	-	-
2.99		001					
23.47.235.2	3	0.000	3.33	23.47.235.27		0.000001	3.90
7		001					
173.194.36.	5	0.000	5.56	173.194.36.72		0.000002	6.49
72		002					
173.194.36.	1	0.000	1.11	173.194.36.71	1	0.000000	1.30
71		000					
173.194.36.	10	0.000	11.11	173.194.36.65		0.000003	12.99
65		003					
23.51.43.27	2	0.000	2.22	23.51.43.27		0.000001	2.60
		001					
199.7.55.72	4	0.000	4.44	199.7.55.72		0.000001	5.19
		001					
177.18.237.	3	0.000	3.33	177.18.237.29	3	0.000001	3.90
29		001					
175.43.124.	1	0.000	1.11	175.43.124.200	1	0.000000	1.30

Table 8. Http Statistics For Trace 6

200		000					
173.194.36.	1	0.000	1.11	173.194.36.66	1	0.000000	1.30
66		000					
HTTP	90	0.000	100%				
Request By		029					
Host							

From above analysis we conclude that Trace 3 and Trace 4 contains more amount of packets captured as compared to other traces. Which depicts that at peek load we have more amount of communication between sender and receiver or between two nodes.

Expert Analysis Summary

	Table 9. Expert Info. For Traces Captured								
	Errors	Count	Warnings	Count	Notes	Count			
Trace	Bad	1(41)	Duplicate IP	5(47)	Malformed	5(65)			
1	checksum		addr.		BOOTP/DHCP				
			Ack no. broken						
			TCP						
Trace	Malformed	1(1)	Ack segment	1(3)	Retransmission	4(64)			
2	Packet		not captured		Duplicate Ack				
					Keep Alive				
Trace	Bad	4(2987	Duplicate IP	10(57)	Malformed	44(417)			
3	Checksum)	addr Ack no.		BOOTP/DHCP				
	Malformed		broken TCP		Duplicate ACK				
	Pkt		Out of order		Fast				
			segment		Retransmission				
Trace	Bad	2(1985	Duplicate IP	16(2574	Malformed	61(1140			
4	checksum	4)	addr Previous)	BOOTP/DHCP	5)			
	Retransmissi		segment not		Duplicate Ack				
	on		captured		Retransmission				
			Ack no. broken		Fast				
			TCP Out of		Retransmission				
			order segment						
Trace	Bad	2(2263	Duplicate IP	18(146)	Malformed	47(805)			
5	Checksum)	addr Previous		BOOTP/DHCP				
	Malformed		segment not		Duplicate Ack				
	Packet		captured		Retransmission				
			Ack no. broken						
			TCP						
Trace	Bad	3(767)	Duplicate IP	12(1093	Malformed	10(668)			
6	Checksum		addr Previous)	BOOTP/DHCP				
	Malformed		segment not		Duplicate Ack				
	Packet		captured		Retransmission				
			Ack no.						
			brokenTCP						

ab.	le 9.	Expert	Info.	For '	Traces	Captured	
-----	-------	--------	-------	-------	--------	----------	--

The Expert info table shown in Table IX. summarizes various errors coming during capturing as Bad Checksum, Malfomed Packets , all the warnings that comes on the way of network as Duplicate IP addresses, Previous segment not captured. Acknowledgement no. broken TCP, Out of order segment and also various notes which give us information about malformed packets, Duplicate acknowledgments and retransmissions. If we have to filter out abnormal traffic we use expert info.

RESULTS

Wireshark offers numerous graphs to depict traffic flow trends. Some graphs are directional, focusing on traffic flowing in a specific direction. In our work, we have analyzed the traffic and obtained the following graphs.

- Time Sequence Graph- The time-sequence graph shows the TCP sequence numbers vs. time. It conveys a lot more information about the TCP stream.
- > Round Trip Time Graph- The RTT graph shows the RTT vs. the sequence number.
- Throughput Graph The throughput graph shows the throughput of the TCP stream vs. time

Analyzing graphs

On per packet basis we can visualize packet rate on different intervals In Time sequence graph, discontinuity in the graph leads to packet loss , throughput fell off dramatically during retransmission. Also these graphs have even slope after every 0.3 sec for approximately 3 seconds. When there is a major disruption, the gap in the graphs suggests TCP retransmission .Round Trip Time graph is meant for establishing the connection. When a packet exceeds RTT value, packet is considered to be lost and thus it is retransmitted in a TCP connection. TCP Throughput graphs are created based on the packet which is selected in the Packet List pane. Graphs can be easily created for any conversation in the trace file.

We have obtained graphs for peak load traces.

Case 1. Trace 3

For graph analysis we have to look at the Flow graph of the trace shown in Figure 4. and from there we plot RTT for each TCP segment sent .Also from the trace we can calculate Throughput of it.

Time	124.124.201.200 8.21.77 65.5	58.26.185.42 4.82.145 2	63.24	Comment	
22.890725000			SYN, ACK	Seq = 0 Ack + 1	
22.890770000			ACK	Seg = 1 Ack + 1	
22,892101000	1	PSH.	ACK-Len: 124	Sec = 1 Ack + 1	
22.916494000	14 · · · ·	: ACK - Len: 1460		Seq = 3003 Ark = 834	
22.927980000	-	ACS - Len: 1460		Sec = 4403 Ack = 834	
22.928010000		ACK		Seq = 834 Act = 5923	
22.947382000	H	ACC - Len: 1460		Seq = 5923 Ack = 834	
22.968210000		ACS - Len: 1460		5eq = 7383 Ack = 834	
22.968242000	15 U	1 ACK	12	Seg = 334 Act = 8843	
22.993334000	-	ACK - Len: 1460		Seg = 8843 Ack = 834	
23.013242000	-	AC6 - Leni 1460		Seg = 10303 Ack = 834	
23.013276000		ACK		Seq = 834 Act = 11763	
23.035503000	a - 1	ACC- Len: 1460		Seq = 11763 Ack = 834	
23.061207000		ACK - Len: 1460		Seg = 13223 Ack = 834	
23.061241000		ACK		Seg = 834 Ack = 14683	
23.085004000	-	ACC - Len: 1460		Seg = 14683 Ack = 834	
23.106025000		ACK - Len: 1460		Seq = 16143 Ack = 834	
23.106054000	10 m	ACK	10	Seg = 834 Apt = 17600	

Figure 4. Flow Graph

From this Flow graph RTT is calculated for each of the first six segments shown in the Table X. below

Commont	Deletive	Time cont	Asknowladgement	DTT
Segment	Relative	Time sent	Acknowledgement	KII
	segment		received	
	no.			
1	1	122.892101000	122.927980000	0.035879
2	834	122.928010000	122.947382000	0.019372
3	5923	122.947382000	122.968242000	0.02086
4	8843	122.993334000	123.013276000	0.019942
5	11763	123.035503000	123.061207000	0.025704
6	14683	123.085004000	123.106025000	0.021021

Table 10. Rtt Calculation For Trace 3

RTT is calculated as , RTT = Acknowledge received - Time sent

Generally the TCP segment will have standard maximum length of 1500 bytes (40 bytes TCP/IP header data and 1460 bytes of TCP payload). This trace shows TCP length greater than 1500 bytes then wireshark is reporting the wrong TCP segment length. It shows one large TCP segment than multiple smaller segments. This inconsistency is due to interaction between Ethernet driver and wireshark software .My results shows too long TCP segments. Time sequence graph of these segments is shown in Figure 5. RTT graph in Figure 6. and Throughput graph in Figure 7.

Figure 5. Time Sequence Graph

Figure 7. Throughput graph

Case2: Trace 4

For graph analysis of Trace 4 Flow Graph is shown in Figure 8. Below by which we can calculate RTT of first six segments.

Time	8.254.128.254	192168.21.77	173.194.3687	173.194.36.95	74.125.135.94	Comment
0.000000000	ACK - Len: 1460	2				Seq = 1Ack = 1
0.024120000	ACK - Lep: 1460					Seg = 1Ack = 1
0.024158000	ACK					Seg = 1Ack = 1461
0.058571000	ACK - Lign: 1460					Seg = 1Ack = 1
0.058618000	ACK					Seg = 1Ack = 1461
0.088101000	ACK - Lep: 1460					Seg = 1Ack = 1
0.088154000	ACK					Seg = 1Ack = 1461
0.120927000	ACK - Len: 1460					Seg = 1461 Ack = 1
0.120962000	ACK					Seg = 1Ack = 2921
0.149105000	ACK - Len: 1460					Seg = 1461 Ack = 1
0.171088000	ACK - Lep: 1460					Seg = 1461 Ark = 1
0.195209000	ACK - Len: 1460					Seg = 1461 Ack = 1
0.215563000	ACK - Len: 1460					Seg = 2321 Ack = 1
0.239561000	ACK - Len: 1460					Seg = 2921 Ack = 1
0.239598000	ACK					Seg = 1Ack = 4381
0.267710000	ACK - Len: 1460					Seg = 2921 Ack = 1
0.267744000	ACK					Seq = 1Ack = 4381

Figure 8. Flow Graph For Trace 4

Segment	Relative	Time sent	Acknowledgement	RTT
	segment		received	
	number			
1	1	0.024120000	0.088154000	0.064034
2	1461	0.120927000	0.195209000	0.074282
3	2921	0.215563000	0.294916000	0.079353
4	4381	0.318974000	0.408527000	0.089553
5	5841	0.446301000	0.493136000	0.046835
6	7301	0.522220000	0.597098000	0.074878

Table 11. Rtt Calculation For Trace 4

From the RTT calculation shown in Table XI. we see that the ACK numbers increase in the sequence 1461,2921,4381,5841....ACK number increases by 1460 each time ,indicates that the receiver is acknowledging 1460 bytes.

By this throughput can also be calculated as

Throughput = Bytes Acknowledge / Time in secs.

As I looked to FINACK packet in Figure 9.which shows a acknowledgement no. of 452,meaning that 452 bytes were acknowledged .The time on this message is 118.501677000.So approximate average throughput can be calculated as

$452/118.501677000 \approx 3.814$ bytes/sec.

Screen shot below in Figure 9. Is of throughput calculation And Time sequence graph for this in Figure 10. RTT in Figure 11. Zoomed RTT in Figure 12. and Throughput Graph in Figure 13.

No.	Time	Source	Destination	Protocol	Length Info	
1316	118.501299000	162.159.242.165	192.168.21.77	HTTP	504 HTTP/1.0 304	Not Modified
1316	118.501304000	162.159.242.165	192.168.21.77	TCP	60 http > 52659	[FIN, ACK] Seq=451 Ack=914 Win=7680 Len
1316	118.501350000	192.168.21.77	162.159.242.165	TCP	54 52659 > http	[ACK] Seq=914 Ack=452 Win=65248 Len=0
1316	3 118. 501677000	192.168.21.77	162.159.242.165	TCP	54 52659 > http	[FIN, ACK] Seq=914 Ack=452 win=65248 Le
1316	118.502053000	192.168.21.77	162.159.242.165	TCP	66 52671 > http	[SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=
13171	118.534713000	192.168.21.77	8.254.128.254	TCP	54 52644 > http	[ACK] Seq=1 Ack=1538841 Win=342 Len=0
1317	118.535510000	162.159.242.165	192.168.21.77	TCP	60 http > 52664	[ACK] Seq=1 Ack=903 Win=7680 Len=0
1317	118.535511000	162.159.242.165	192.168.21.77	HTTP	502 HTTP/1.0 304	Not Modified
1317	118.535513000	162.159.242.165	192.168.21.77	TCP	60 http > 52664	[FIN, ACK] Seq=449 Ack=903 Win=7680 Len
1317	5 118. 535619000	192.168.21.77	162.159.242.165	TCP	54 52664 > http	[ACK] Seq=903 Ack=450 Win=65252 Len=0
1317	118.535851000	192.168.21.77	162.159.242.165	TCP	54 52664 > http	[FIN, ACK] Seq=903 Ack=450 win=65252 Le
1317	3 118. 536203000	192.168.21.77	162.159.242.165	TCP	66 52672 > http	[SYN] Seq=0 win=8192 Len=0 MSS=1460 WS=
1318	118.584928000	74.125.200.95	192.168.21.77	TCP	384 [TCP segment	of a reassembled PDU]
1318	3 118. 597546000	192.168.21.77	173.194.36.81	TCP	66 52673 > http	[SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=
13184	118.608389000	74.125.200.95	192.168.21.77	HTTP	1031 HTTP/1.0 404	Not Found (text/html)
1318	118.608423000	192.168.21.77	74.125.200.95	TCP	54 52660 > http	[ACK] Seq=399 Ack=1308 Win=54392 Len=0
1318	5 118.608647000	192.168.21.77	74.125.200.95	TCP	54 52660 > http	[FIN, ACK] Seq=399 Ack=1308 Win=64392 L
1318	118.613365000	192.168.21.77	162.159.242.165	TCP	66 52674 > http	[SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=
1318	8 118.613549000	192.168.21.77	173.194.36.81	TCP	66 52675 > http	[SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=
1319	118.630981000	74.125.200.95	192.168.21.77	TCP	60 http > 52660	[FIN, ACK] Seq=1308 Ack=399 Win=6912 Le

Figure 9. Screenshot of wireshark screen of Trace 4

Figure 10. Time Sequence Graph

Figure 12. RTT graph (Zoom)

Figure 13. Throughput Graph

- Note that a set of dots stacked above each other represents a series of packets that were sent back-to-back by the sender.
- (I) Anomalies

DHCP SPOOF

A DHCP attack consists of falsifying DHCP packets. In this, attacker install a false DHCP such that it responds to DHCP DISCOVER client request. When a computer is connected to a network and requests an IP address, it sends DHCP DISCOVER to broadcast address and waits for the response of a DHCP server as shown in Figure 14.

The server then replies to this request by sending DHCP OFFER. The client can receive offers from various DHCP as if offer is corresponding to a previously assigned address the client selects this and if proposal is not related to the previous address, the client acquires the first offer received. Then in response DHCP REQUEST is sent for authorization with DHCPACK or with DHCPNAK.

To provide warning of these situations we can use filters in Wireshark to fastly search for ACK responses with a DNS different from the one configured on DHCP server: bootp.option.value == 05 && (frame[309:6] != $03:04:c0:a8:fe:fe \parallel frame[315:6] == 06:04:c0:a8:fe:d3$) as shown in Figure 15.

Figure 14. DHCP Spoofing

In this way we can configure it to display the segments sent by DHCP server that do not contain the IP gateway. One more type of attack consists of sending multiple DHCP DISCOVER packets as shown in Figure 16.with the objective of finishing-up the range of IP available in the DHCP server. Graph for DHCP Spoofing is shown in Figure 17. which shows how multiple packets are coming in small time span. To get out of this type of problems many tools are available for free.

Vo.	Time	Source	Destination	Protocol	Length Info		
3369	35.803253000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0x35b3caf2
6728	68.880647000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0x24118e5a
12932	116.607793000	192.168.0.99	192.168.21.77	DHCP	342 DHCP	ACK	- Transaction ID 0x9f63db91
43652	512.786311000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0x52141afc
55582	630.733415000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0xeb5deaf9
58096	669.177940000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0xfc94f9ff
72475	958.643047000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0xd6108b0f
72607	962.177376000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0xd6108b0f
74740	983.263548000	192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0xcfe04452
80577	1103.73329000	0192.168.0.99	255.255.255.255	DHCP	342 DHCP	ACK	- Transaction ID 0x4ed0763f

Figure 15. DHCP Filter

vo.	Time	Source	Destination	Protocol	Length	Info					
18145	161.477629000	192.168.23.47	255.255.255.255	DHCP	342	DHCP	Inform	-	Transaction	ID	0xf9861d59
18258	163.254898000	0.0.0.0	255.255.255.255	DHCP	351	DHCP	Discover	-	Transaction	ID	0xdb6866c4
18265	163.403255000	0.0.0.0	255.255.255.255	DHCP	363	DHCP	Request	-	Transaction	ID	0xdb6866c4
18640	167.608708000	0.0.0.0	255.255.255.255	DHCP	345	DHCP	Request	-	Transaction	ID	0x39a6fe09
18793	170.596705000	0.0.0.0	255.255.255.255	DHCP	342	DHCP	Discover	-	Transaction	ID	0x2857dd97
18794	170.617814000	0.0.0.0	255.255.255.255	DHCP	351	DHCP	Request	-	Transaction	ID	0x2857dd97
18937	174.256376000	0.0.0.0	255.255.255.255	DHCP	342	DHCP	Decline	-	Transaction	ID	0x2857dd97
18953	174.508168000	0.0.0.0	255.255.255.255	DHCP	354	DHCP	Request	-	Transaction	ID	0xd08ff5f9
19129	177.574967000	192.168.23.19	255.255.255.255	DHCP	342	DHCP	Inform	-	Transaction	ID	0x5269b76a
19471	180.573559000	192.168.23.19	255.255.255.255	DHCP	342	DHCP	Inform	-	Transaction	ID	0x5269b76a
19890	184.221952000	0.0.0.0	255.255.255.255	DHCP	342	DHCP	Discover	-	Transaction	ID	0xcb415e7b
20275	188.347628000	0.0.0.0	255.255.255.255	DHCP	345	DHCP	Request	-	Transaction	ID	0xc9176296
20380	191.478739000	0.0.0.0	255.255.255.255	DHCP	342	DHCP	Decline	-	Transaction	ID	0xc9176296
20549	196.332450000	0.0.0.0	255.255.255.255	DHCP	343	DHCP	Request	-	Transaction	ID	0xfd6a9aac

Figure 16. DHCP Exhaustion

Figure 20. is an example of DDOS attacks on a small scale, that stands out as soon as the capture process starts. In this process a large number of TCP segments with the SYN flag activated from

Figure 19. Showing Three way handshake process and SYN Attack

the same IP also shown in Figure 18. that do not receive a response from the web service. You can see the packet sequence graphically by selecting from the menu *Statistics*, >>Flow Graph. By this we can track the behaviour of TCP connections, arrows shows the source and target of each packet. There are a number of attempts at one address, this an unusual situation.

When no response is received ,it cannot send an ACK-SYN to the same to continue with the three step connection.TCP/IP stack has to wait for a set of time for each connection. More packets keep arriving that create new connections and to identify these connection Transmission Control Block is created shown in Figure 19. so that machine stops responding to more connection requests.

ARP SPOOF- ARP SPOOF is used by attacker to get in between one or more machine to intercept or capture packets. where you can quickly see that something suspect is occurring due to the large quantity of ARP traffic that is being received. If you take a more detailed look at the behaviour of the protocol, you will realize that the server is being attacked shown in Figure 21. In Figure 22. packet number 17963, you can see how the machine with IP 192.168.21.77, and a Message Authentication Code (MAC) HonHaiPr_0b:6d:97, has launched an ARP request to the broadcast address asking for the MAC of the IP 192.168.23.170 Immediately afterwards, the router responds with an ARP reply indicating the MAC address. Then the same IP repeats the process and requests the MAC of the IP using another broadcast diffusion.[7] The server responds with its

Figure 20. Flow Graph

lo.	Time	Source	Destination	Protocol	Length Info
17945	159.201341	Pegatron_59:c5:20	Broadcast	ARP	60 who has 192.168.1.100? Tell 192.168.23.114
17956	159.346812	HonHaiPr_c5:55:87	Broadcast	ARP	60 who has 192.168.1.75? Tell 192.168.20.155
17959	159.374376	6 HonHaiPr_Ob:6d:97	Broadcast	ARP	60 who has 192.168.21.77? Tell 192.168.23.170
17960	159.37439	HewlettP_1f:55:78	HonHaiPr_Ob:6d:97	ARP	42 192.168.21.77 is at 6c:3b:e5:1f:55:78
17962	159.376651	HewlettP_1f:55:78	Broadcast	ARP	42 who has 192.168.23.170? Tell 192.168.21.77
17963	159.37996	5 HonHaiPr_Ob:6d:97	HewlettP_1f:55:78	ARP	60 192.168.23.170 is at 4c:0f:6e:0b:6d:97
17977	159.51627	6 HonHaiPr_f2:83:79	Broadcast	ARP	60 who has 192.168.1.2? Tell 192.168.20.113
17981	159.547020	Pegatron_59:c5:20	Broadcast	ARP	60 who has 192.168.0.102? Tell 192.168.23.114
17983	159.577940	HonHaiPr_c5:55:87	Broadcast	ARP	60 who has 192.168.21.164? Tell 192.168.20.155
18009	159.909689	Htc_4f:54:9b	Broadcast	ARP	60 who has 192.168.0.99? Tell 192.168.21.77 (duplicate use
18023	160.02806	R HonHaipr 33:b7:39	Broadcast	ARP	60 who has 192.168.0.1002 Tell 192.168.23.61
Ether Des Solution	e 17963: 60 rnet II, Sr stination: urce: HonHa pe: ARP (0)) bytes on wire (480 c: HonHaiPr_0b:6d:9 HewlettP_1f:55:78 (aiPr_0b:6d:97 (4c:0 (0806)	bits), 60 bytes ca 7 (4c:0f:6e:0b:6d:9 6c:3b:e5:1f:55:78) :6e:0b:6d:97)	aptured (97), Dst:	480 bits) on interface 0 HewletP_lf:55:78 (6c:3b:e5:1f:55:78)

Padding: 48ebcda4617ecf87ff120000c7c5a26c1525

Figure 22. Wireshark Areas Of ARP Packets

MAC address. Everything is going normal till. Problem occurs when machine repeatedly sends to server false ARP packets both with its own MAC. This way traffic transmitted between local network and server goes through the attacking machine.

No.	Time	Source	Destination	Protocol	Length I	Info		
17959	159.374376000	HonHaiPr_Ob:6d:97	Broadcast	ARP	60	who has	192.168.21.77? Tell 192.168.23.170	
17960	159.374395000	HewlettP_1f:55:78	HonHaiPr_Ob:6d:97	ARP	42	192.168	.21.77 is at 6c:3b:e5:1f:55:78	ć
17962	159.376651000	HewlettP_1f:55:78	Broadcast	ARP	42	who has	192.168.23.170? Tell 192.168.21.77	
17963	159.379965000	HonHaiPr_Ob:6d:97	HewlettP_1f:55:78	ARP	60	192.168	.23.170 is at 4c:0f:6e:0b:6d:97	
17977	159.516275000	HonHaiPr_f2:83:79	Broadcast	ARP	60	who has	192.168.1.2? Tell 192.168.20.113	
17981	159.547020000	Pegatron_59:c5:20	Broadcast	ARP	60	who has	192.168.0.102? Tell 192.168.23.114	
17983	159.577940000	HonHaiPr_c5:55:87	Broadcast	ARP	60	who has	192.168.21.164? Tell 192.168.20.155	
18009	159.909689000	Htc_4f:54:9b	Broadcast	ARP	60	who has	192.168.0.99? Tell 192.168.21.77 (duplicat	e
18023	160.028063000	HonHaiPr_33:b7:39	Broadcast	ARP	60	who has	192.168.0.100? Tell 192.168.23.61	
18025	160.077204000	HonHaiPr_c5:55:87	Broadcast	ARP	60	who has	192.168.1.75? Tell 192.168.20.155	
18026	160.080980000	Universa_04:c8:76	Broadcast	ARP	60	who has	192.168.11.2? Tell 192.168.20.18	
18027	160.081598000	Universa_04:c8:76	Broadcast	ARP	60	who has	192.168.245.241? Tell 192.168.20.18	
18029	160.114725000	LiteonTe_3b:ff:87	Broadcast	ARP	60	who has	10.0.2.2? Tell 10.0.2.16	
18034	160.200650000	Universa_04:c8:76	Broadcast	ARP	60	who has	192.168.1.4? Tell 192.168.20.18	
18035	160.201332000	Pedatron 59:c5:20	Broadcast	ARP	60	who has	192.168.1.1007 Tell 192.168.23.114	
٠				III		_		ŧ
E Fran	e 15629: 60 byt net II. Src: H	tes on wire (480 bi HonHaiPr fa:c9:cf (ts), 60 bytes captur 68:94:23:fa:c9:cf).	ed (480 Dst: Br	0 bits) roadcast	on inte	rface 0 :ff:ff:ff:ff)	
	licate IP addre	ess detected for 19	2.168.20.82 (68:94:)	3:fa:c9	9:cf) -	also in	use by 74:45:8a:25:79:fa (frame 1366)]	
E Addr	ess Resolution	Protocol (request)						
Ha	dware type: Et	thernet (1)						
Pre	otocol type: IF	P (0x0800)						
Ha	dware size: 6							
Pre	otocol size: 4							
00	code: request	(1)						
EN	der MAC addres	s HonHaipr farch	f (68.94.23.fa.co.	f)				
20	IUCI MAL AUUI C.							

Figure 23. Arp capturing Duplicate IP address which is first used in frame no.1366

The hexadecimal text in the lower portion corresponds to the segment transmitted by the network. Therefore, anyone can take those values. He can modify them and resend them. To do this, right-click "*Frame 1366*" and select "*Export Selected Packet Bytes*" and save the segment in a file. At a later stage you can modify the segment creating an ARP reply with any kind of Hexadecimal Editor. If there is any other device using the same IP which is already in use by another, it sends ARP Reply with it's MAC address. Thus the Windows comes to know that the same IP address is being used again as in Figure 23.

There might be another situation when number of packets are coming from same IP address continuously as shown in Figure 24. And this is for attacking purpose. Graph in Figure 25 shows at time interval near 9.15 there are continuous packets coming from same address.

HTTP Spidering - In HTTP a client sends a request message to the server and then in return a response message back to client. When sending malicious requests to the application, the web client will send a request for a specific resource. In this case is 192.168.21.77. The GET method is used to request a web page and it passes any parameters in the URL field .Some applications just requests many web pages in a short period of time. There's over 13 different requests made under 1 sec from the same address shown in Figure 26. And graph is shown in Figure 27 which shows multiple requests in a short period.

lo.	Time	Source	Destination	Protocol	Length	Info			
22819	754, 537879000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192, 168, 20, 937	Tell 192, 168, 20, 226	
22820	754, 542729000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	192,168,20,94?	Tell 192, 168, 20, 226	
22821	754, 548914000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	192 168 20.952	Tell 192 168 20 226	
22822	754, 554028000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192,168,20,962	Tell 192, 168, 20, 226	
22823	754, 560064000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192.168.20.97?	Tell 192, 168, 20, 226	
22824	754, 566347000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192.168.20.1017	Tell 192,168,20,226	
22825	754, 572144000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1027	Tell 192.168.20.226	
22826	754, 576145000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192.168.20.103	Tell 192,168,20,226	
22827	754,580802000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1047	Tell 192,168,20,226	
22828	754, 591115000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	as 192,168,20,1057	Tell 192,168,20,226	
22829	754,596247000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1067	Tell 192.168.20.226	
22830	754,603047000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192.168.20.108	Tell 192.168.20.226	
22831	754.607757000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1097	Tell 192.168.20.226	
22832	754.612516000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1107	Tell 192.168.20.226	
22833	754.618183000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1117	телл 192.168.20.226	
22834	754.622770000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1127	Tell 192.168.20.226	
22835	754.627492000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1147	Tell 192.168.20.226	
22836	754.634016000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1287	Tell 192.168.20.226	
22837	754.639057000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1297	Tell 192.168.20.226	
22838	754.645362000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1307	Tell 192.168.20.226	
22839	754.650085000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1317	Tell 192.168.20.226	
22840	754.655696000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1327	Tell 192.168.20.226	
22841	754.661320000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.133	Tell 192.168.20.226	
22842	754.667293000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1417	Tell 192.168.20.226	
22843	754.668431000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1423	Tell 192.168.20.226	
22844	754.675834000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.143?	Tell 192.168.20.226	
22845	754.680366000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1447	Tell 192.168.20.226	
22846	754.683463000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1453	Tell 192.168.20.226	
22847	754.687984000	SamsungE_54:6a:8a	Broadcast	ARP	60	who ha	as 192.168.20.1467	Tell 192.168.20.226	
22849	754,703793000	SamsungE 54:6a:8a	Broadcast	ARP	60	who ha	192, 168, 20, 1623	Tell 192,168,20,226	

Figure 24. ARP spoofing window

Figure 25. Graph of ARP Spoofing

Vo.	Time	Source	Destination	Protocol	Length Info
19570	277.942780000	68.232.44.121	192.168.21.77	HTTP	806 HTTP/1.0 200 OK (PNG)
19579	278.024542000	68.232.44.121	192.168.21.77	HTTP	734 HTTP/1.0 200 OK (PNG)
19587	278.084062000	68.232.44.121	192.168.21.77	HTTP	802 HTTP/1.0 200 OK (PNG)
19599	278.148706000	68.232.44.121	192.168.21.77	HTTP	679 HTTP/1.0 200 OK (PNG)
19609	278.211446000	68.232.44.121	192.168.21.77	HTTP	1349 HTTP/1.0 200 OK (PNG)
19610	278.211451000	197.168.20.254	239.255.255.250	SSDP	175 M-SEARCH * HTTP/1.1
19618	278.251796000	68.232.44.121	192.168.21.77	HTTP	862 HTTP/1.0 200 OK (PNG)
19629	278.285372000	68.232.44.121	192.168.21.77	HTTP	1042 HTTP/1.0 200 OK (PNG)
19639	278.328473000	68.232.44.121	192.168.21.77	HTTP	686 HTTP/1.0 200 OK (PNG)
19658	278.398025000	68.232.44.121	192.168.21.77	HTTP	1162 HTTP/1.0 200 OK (PNG)
19663	278.412729000	68.232.44.121	192.168.21.77	HTTP	398 HTTP/1.0 200 OK (PNG)
19680	278.541808000	192.168.20.98	239.255.255.250	SSDP	175 M-SEARCH # HTTP/1.1
19681	278.550697000	68.232.44.121	192.168.21.77	HTTP	988 HTTP/1.0 200 OK (PNG)
19688	278.570431000	68.232.44.121	192.168.21.77	HTTP	968 HTTP/1.0 200 OK (PNG)
19700	278.619689000	68.232.44.121	192.168.21.77	HTTP	755 HTTP/1.0 200 OK (PNG)
19708	278.651755000	68.232.44.121	192.168.21.77	HTTP	1342 HTTP/1.0 200 OK (JPEG JFIF image)
19720	278.717535000	68.232.44.121	192.168.21.77	HTTP	1295 HTTP/1.0 200 OK (PNG)
19736	278.769140000	68.232.44.121	192.168.21.77	HTTP	1170 HTTP/1.0 200 OK (PNG)
19751	278.801336000	192.168.21.77	68.232.44.121	HTTP	454 GET /avatar/9c3a699cb80e5025f85c91a994aa37be?s=32&d=
19759	278.825135000	192.168.21.77	68.232.44.121	HITTP	454 GET /avatar/cf485ffd070543af974d79f09d58789b?s=32&d=
19762	278.828193000	192.168.21.77	68.232.44.121	HITP	454 GET /avatar/fc56344a30def55b388963fcc3091c01?s=32&d=
19765	278.838631000	192.168.21.77	68.232.44.121	HITP	454 GET /avatar/f1130670ae42dad83dc326834c319915?s=32&d=
19768	278.848478000	192.168.21.77	68.232.44.121	HITTP	454 GET /avatar/c36e82a3bcc09f1b889c16f517241aa4?s=32&d=
19774	278.876188000	192.168.21.77	68.232.44.121	HTTP	454 GET /avatar/357a20e8c56e69d6f9734d23ef9517e8?s=32&d=
19787	278.968305000	192.168.21.77	68.232.44.121	HTTP	454 GET /avatar/d2334268b06fa8ddbd4215d1f5e30b8f?s=32&d=
19792	278.982656000	192.168.21.77	68.232.44.121	HTTP	454 GET /avatar/3b21574da3de5cd03e047cfbf7b6177c?s=32&d=
19795	279.001228000	192.168.21.77	68.232.44.121	HTTP	454 GET /avatar/954de18464c66004081d1f16cb1f9f1a?s=32&d=
10100	170 015740000	101 168 31 77	60 111 44 101	LOTTO	AFA CET AND DE ATENCES DE ACONTES DO ATENCONSTINE ALTENTE TORA

Figure 26. HTTP Spidering

Figure 27. Graph of HTTP SpIdering

CONCLUSIONS

In our work we analyzed and captured the data which is done with a tool named Wireshark which is the best packet analyzer. All the options in this tool were studied and experimented by obtaining traces from the conversations among nodes from specific IP addresses in an institute. The traces thus obtained from the traffic analysis were analysed as protocol usage in all traces for Low ,Medium and Peak loads and HTTP Statistics i.e Request and response from one address to another. Expert analysis is also taken which shows errors ,warnings , notes of all the information coming under capturing. These are then graphed into Time sequence graph, Round Trip Time graph and Throughput graph. The tool also takes into account the possible attacks such as DHCP SPOOFING, DDOS Attack, ARP spoofing, HTTP Spidering.

FUTURE WORK

There are some bandwidth limitations on wireshark which lead to performance degradation while traffic analysis is carried by it. Moreover the processing load at the monitoring device is very high because during traffic analysis it captures the irrelevant data also which is of no use and thus increasing the load on the device. So there should be some special filters installed at the

monitoring device to capture the data not more than the data which is actually needed for the analysis. So we suggest more research should be done by considering these parameters also.

ACKNOWLEDGEMENT

I am grateful to God Almighty with whose blessings this study could be successfully completed. Words won't suffice to express my extreme indebtedness and deep sense of gratitude for my respected teacher Dr. Monika Sachdeva, Dept of Computer Science, SBSSTC, Ferozepur, for her constant inspiration, consistent encouragement, personal interest, and invaluable guidance of this study. I also find myself short of words to express my gratefulness to Dr.Krishan Saluja, who rendered me help, moral support, cooperation and encouragement in shaping up this paper.

REFERENCES

- Shilpi Gupta,et.al "Intrusion Detection System Using Wireshark", Software engineering, ITM University Gurgaon, International Journal of Advanced Research in Computer Science and Software Engineering, Volume 2, Issue 11, November 2012 ISSN: 2277 128X
- Aamir Hassan "*Network Security Analysis*", School of Information Science, Computer and Electrical Engineering Halmstad University, Technical report, IDE 1004, February 2010
- Usha Banerjee, et.al, "Evaluation of the Capabilities of WireShark as a tool for Intrusion Detection", Department of Computer Science & Engineering College of Engineering Roorkee, International Applications (0975 8887) Volume 6– No.7, September Journal of Computer 2010
- Joshua L. Davis "Using Wireshark to Create Network-Usage Baselines", Georgia Tech Research Institute Georgia Institute of Technology Atlanta, GA 30332, Copyright © 2007 Georgia Tech Research Corporation, June 2007
- Ulf Lamping, Richard Sharpe, NS Computer S/W And Services P/L, Ed Warnicke" *Wireshark User's Guide*", Copyright © 2004-2014 Ulf Lamping, Richard Sharpe, Ed Warnicke
- Mohsin Khan, et.al, "Investigation of DHCP Packets using Wireshark", Volume 63- Number 4, Published by Foundation of Computer Science, New York, USA, International Journal of Computer Applications 63(4):1-9, February 2013.
- Inteco-Cert,"Traffic Analysis With Wireshark", Borja Merino Febero, February 2011
- Sanders, Chris (May 23,2007), "Practical Packet Analysis Using Wireshark to solve Real World Network Problems", No starch Press p.192 ISBN 1-59327-149-2
- Orebaugh ,Angela ; Ramirez ,Gilbert ; Beale , Jay(February 14,2007) "Wireshark & Ethereal Network Protocol Analyzer Toolkit" by Angela Orebaugh ,Gilbert Ramirez ,Josh Burke, by Syngress Publishing.
- Justin Jay Lister (January, 1995), "Intrusion Detection Systems: An introduction to the detection and prevention of computer abuse", Computer Security Research, Department of Computer Science, University of Wollongong Copyright © 1994 by Justin Jay Lister
- Emilie Lundin, et.al, "Survey of Intrusion Detection Research", Department of Computer Engineering Chalmers University of Technology, Technical Report nr. 02-04,2002.